The Labour Market Module: data, estimations and results

Desislava Dankova

AD-SILC dataset: contents and features

- AD-SILC is an unbalanced panel dataset containing both:
- retrospective information on individuals' working conditions before the year of survey of SILC, and
- forward-looking information on individuals' working conditions after the year of survey of SILC.
- Panel INPS - longitudinal data of individuals' working history since their entry in the LM: occupational status, income evolution, contribution accumulation, etc.
- Panel SILC - longitudinal data of individual socio-economic characteristics (up to 4 years): education, marital status, number of children, etc.

Analyses, regressions and projections (1)

- Analyses of the workers' dynamics in Italy - evidence from the AD-SILC dataset:
- Transition matrixes
- Earnings distribution trends
- Accumulation of pension contributions

Analyses, regressions and projections (2)

- Regressions used in the model are based on the entire dataset AD-SILC.
\Rightarrow All individuals in IT-SILC 2004-2012 and the respective working and contribution history carried out by INPS are considered over the period 1998-2011.
- Modelling the demographic dynamics
- Modelling the working statuses
- Modelling the earnings process

Analyses, regressions and projections (3)

- Simulations - based on a single extract of AD-SILC.
- 2011 is the starting point of the simulation, with a sample which is representative of the Italian population in that year.
- The dataset is cross-sectional, integrated with retrospective information about working conditions, acquired work experience, total number of years of contribution, etc.
\Rightarrow The base sample of the model includes individuals surveyed in SILC 2011 and the respective working, labour income and contribution conditions registered in INPS archives.

Some evidence on the labour market conditions in Italy from the AD-SILC dataset

LM transitions

Transitions between working statuses after 1 year - $\mathbf{2 0 0 0}$ vs $\mathbf{2 0 0 8}$

Open-ended employees

Fixed-term employees

Transitions between working statuses after 1 year - $\mathbf{2 0 0 0}$ vs $\mathbf{2 0 0 8}$

Persistence in the work state in 2008 after 1 and 3 years (by age class)

35-44

45-54

Working conditions after 1 year of those employed in 2008 (by education)
At most lower-secondary

	2009				
2008	Perm.	Fixed Term	Self-empl.	Atypical	Out of work
Perm	91.2	2.4	0.5	0.1	5.8
Fixed Term	18.3	60.6	1.9	0.4	18.8
Self-empl.	0.9	1.1	93.0	0.4	4.6
Atypical	7.4	2.8	4.6	76.9	8.3

Upper-secondary

2008	Perm.	Fixed term	Self-empl.	Atypical	Out of work
Perm.	$\mathbf{9 4 . 6}$	1.4	0.5	0.2	3.3
Fixed	19.5	$\mathbf{5 8 . 8}$	2.8	1.5	17.5
Self-empl.	0.8	1.1	$\mathbf{9 4 . 8}$	0.3	3.0
Atypical	4.1	3.7	2.5	$\mathbf{8 0 . 4}$	9.4

Tertiary

2008	Perm.	Fixed term	Self-empl.	Atypical	Out of work
Perm.	$\mathbf{9 5 . 8}$	1.4	0.5	0.5	1.8
Fixed	23.0	53.6	2.6	3.8	17.0
Self-empl.	1.0	1.0	$\mathbf{9 6 . 1}$	0.4	1.5
Atypical	3.9	8.2	1.7	$\mathbf{8 0 . 3}$	6.0

Note: workers aged 35-44 in 2008 are considered

Working conditions after 3 years of those employed in 2008 (by education)
At most lower-secondary

	2011				
2008	Perm	Fixed Term	Self-empl.	Atypical	Out of work
Perm	85.0	4.3	1.7	0.3	8.8
Fixed Term	29.4	49.5	2.8	0.8	17.5
Self-empl.	3.5	2.2	86.9	1.0	6.4
Atypical	20.4	6.1	9.2	54.1	10.2

Upper-secondary

	Perm	Fixed term	Self-empl.	Atypical	Out of work
Perm	$\mathbf{9 1 . 0}$	2.6	1.5	0.5	4.5
Fixed	36.9	40.6	3.5	2.3	16.7
Self-empl.	2.8	1.6	$\mathbf{9 0 . 2}$	1.0	4.4
Atypical	10.6	3.8	7.2	67.8	10.6

Tertiary

	Perm	Fixed term	Self-empl.	Atypical	Out of work
Perm	93.4	2.0	1.2	1.0	2.5
Fixed	37.1	41.1	5.7	4.4	11.8
Self-empl.	3.1	2.0	92.2	0.6	2.1
Atypical	12.6	6.7	4.5	65.9	10.3

Note: workers aged 35-44 in 2008 are considered

Labour earnings dynamics

Trend of yearly gross earnings by work typology

Trend of earnings inequality - Gini index

Contributions accumulation for the first NDC cohorts

- Focus on individuals having started to work in 1996-1998.
- Followed for 13 years (around $1 / 3$ of the career).
- Accumulation adequacy assessed with respect to a representative individual working continuously as a full-time employee and earning the median wage (around 25,000 real gross annual Euros).

Distribution of contribution weeks (wrt potential weeks)

Relative distribution of contributions accumulation (wrt median employee)

Modelling the labour market dynamics in T-DYMM: features and simulation results

LM transitions (1)

- Conditional probabilities of LM transitions across employment states are estimated based on a sequence of binary behavioural choices with the following logical order:

1. Probability to be employed (all individuals who are not students nor retired are included in the regressions);

2. Probability to be atypical worker among all workers defined in step 1;

3. Probability to be an employee among workers defined in step 1 except atypical workers;

IE ${ }^{4}$ Probability to be self-employed (residual category);

LM transitions (2)

Among employees the subsequent choices are concerned:

1. Economic sector (private vs public);
2. Contract duration (temporary vs permanent);
3. Time arrangements (part-time vs full-time).

LM transitions (3)

- Sample size: $1,105,456$ observations, relative to 82,137 individuals aged 16-69 years old.
- Estimation period: 1998-2011.
- The estimations are carried out separately for men and women.
- Random effect logit models for LM transitions in order to account for individual unobserved heterogeneity.
- Lagged labour states are also included among the regressors.

NB: we do not include in our regressions any variable that is not present in the "simulation world" because of the impracticability of projecting its evolution in time.

Prob. to be employed conditional on individual characteristics -odds-ratios

Work typology at time t-1

Age and experience

Other individual characteristics

Employment composition by work typology

Source:T-DYMM - own elaborations

Estimations of earnings

Yearly individual labour income gross of personal income taxation is the product of two components:

monthly gross wages

The earnings process is modelled separately for the three work typologies and by gender

months worked

Modelled in two steps:

1) The probability of being in work all year (concerns atypical and temporary workers)
2) Define the months worked for those workers who are not assigned to the «work all year» status

Wage function

- The WF consists of a vector of observed variables ($\boldsymbol{X}_{\boldsymbol{i}}$) and unobserved variables which are represented be a random component that captures heterogeneity in permanent differences between individuals $\left(u_{i}\right)$ and a stochastic error component $\left(v_{i t}\right)$:

$$
y_{i t}=\boldsymbol{X}_{\boldsymbol{i t}} \boldsymbol{\beta}+u_{i}+v_{i t}
$$

- The permanent error component, u_{i}, (i.e. intellectual ability, soft skills, motivation) represents a constant wage deviation for each individual, where $u \sim N\left(0, \sigma_{u}{ }^{2}\right)$.
- The transitory component, $v_{i t}$, (i.e. bonuses, illness, overtime) follows an $\mathrm{AR}(1)$ process plus a white noise error, $\varepsilon_{i t}$:

$$
v_{i t}=\rho v_{i, t-1}+\varepsilon_{i t} \quad, \varepsilon \sim N\left(0, \sigma_{\varepsilon}^{2}\right) \text { and }|\rho|<1
$$

Estimations of monthly wages

- A random effect GLS estimator has been utilised to estimate the wage equation on the AD-SILC panel data.
- Estimation period: 1998-2011
- The estimations are carried out separately for the three work categories and for men and women.
- Sample size: 632,762 observations for 79,009 individuals aged 20-60: about 75% are employees, $19,5 \%$ are self-employed and 5,5\% are atypical workers.

IESS

Estimations of months worked

1. Estimations of the probability of being in work all year:

- Random Effect Logit model;
- Sample size - 96,933 observations for 29,391 individuals: 48% are men and 52% are women;
- Estimation period: 1998-2011.

2. Estimations of months worked:

- Same model as for monthly wages;
- Sample size- 50,264 observations for 12,768 individuals: 41% are men and 59% are women;
- Estimation period: 1998-2011.

IESS

Monthly wages of employees (estimation results)

	Males (1)		Females (2)	
	b	se	b	se
tertiary degree	0.545***	0.006	0.4411 ***	0.007
upper-sec. degree	$0.2088 * * *$	0.004	$0.2027 * * *$	0.005
age	$0.0893 * * *$	0.003	$0.0381 * * *$	0.005
age ${ }^{2}$	$-0.0022^{* * *}$	0	-0.0011 ***	0
age ${ }^{3}$	0***	0	0***	0
work experience	$0.0227 * * *$	0.001	$0.0241^{* * *}$	0.001
work experience ${ }^{2}$	$-0.0003 * * *$	0	$-0.0004 * * *$	0
years as employee (lag)	0.0082***	0	$0.0113^{* * *}$	0
perm. contract			$0.0508 * * *$	0.003
perm. contract (lag)	$0.0137 * * *$	0.001	$0.0371^{* * *}$	0.003
part-time	-0.3741***	0.003	-0.3225***	0.003
part-time (lag)	-0.0391 ***	0.003	-0.0645***	0.003
public	0.1118***	0.004	0.1057***	0.007
public (lag)	$0.0109 * * *$	0.004	0.0977***	0.006
in work (lag)	$0.0314^{* * *}$	0.002		
married	$0.0098 * *$	0.002	$-0.0281 * * *$	0.004
partner in work	$0.0055^{* * *}$	0.002		
children aged 0-3			-0.1881***	0.003
constant	5.9656***	0.038	6.482***	0.066
σ_{u}	0.2812		0.2974	
σ_{v}	0.1719		0.3242	
ρ	0.4638		0.2878	
$\overline{R^{2} \text {-within }}$	0.1955		0.122	
R^{2}-between	0.4704		0.4902	
R^{2}-overall	0.3998		0.3837	
N.obs.	272,072		217,742	

Trend of yearly gross incomes by gender

Trend of yearly gross incomes by gender (with GDP growth)

Trend of monthly wages of employees (males)

Source: T-DYMM 2.0 - own elaborations
Trend of monthly wages of employees (females)

IESS
 Improving Effectiveness in Social Security

**** Hiprogetto IESS è einanziato dal Programma per l'Occupazione e la Solidarietà Sociale dell'Unione Europea - PROGRESS (2007-2013 Le informazioni contenute in questo documento riflettono solamente le posizioni dell'autore. La Commissione Europea non può essere Efconsideratasin alcun modo responsabile dell'uso che può essere fatto di quanto in esso contenuto.

